Erinevus Regressiooni Ja ANOVA Vahel

Erinevus Regressiooni Ja ANOVA Vahel
Erinevus Regressiooni Ja ANOVA Vahel

Video: Erinevus Regressiooni Ja ANOVA Vahel

Video: Erinevus Regressiooni Ja ANOVA Vahel
Video: Агрогороскоп с 11 по 13 июля 2021 года 2025, Jaanuar
Anonim

Regressioon vs ANOVA

Regressioon ja ANOVA (dispersioonanalüüs) on statistikateoorias kaks meetodit, et analüüsida ühe muutuja käitumist teisega. Regressioonis on see sageli sõltuva muutuja sõltuva muutuja variatsioon, samas kui ANOVA-s on see kahe populatsiooni kahe valimi atribuutide variatsioon.

Lisateave regressiooni kohta

Regressioon on statistiline meetod, mida kasutatakse kahe muutuja vahelise seose joonistamiseks. Sageli võib andmete kogumisel olla muutujaid, mis sõltuvad teistest. Täpse seose nende muutujate vahel saab kindlaks teha ainult regressioonimeetoditega. Selle seose kindlakstegemine aitab mõista ja ennustada ühe muutuja käitumist teisele.

Regressioonianalüüsi kõige tavalisem rakendus on sõltuva muutuja väärtuse hindamine antud väärtuse või sõltuvate muutujate väärtuste vahemiku jaoks. Näiteks regressiooni abil saame juhusliku valimi põhjal kogutud andmete põhjal luua seose tooraine hinna ja tarbimise vahel. Regressioonanalüüs annab andmekogumi regressioonifunktsiooni, mis on matemaatiline mudel, mis kõige paremini sobib olemasolevate andmetega. Seda saab hõlpsasti kujutada hajutamise graafikuna. Graafiliselt regressioon on samaväärne andmekogumi jaoks sobivaima kõvera leidmisega. Kõvera funktsioon on regressioonifunktsioon. Matemaatilise mudeli abil saab konkreetse hinna korral kauba kasutamist ennustada.

Seetõttu kasutatakse regressioonianalüüsi ennustamisel ja prognoosimisel laialdaselt. Seda kasutatakse ka seoste loomiseks eksperimentaalsetes andmetes, füüsika, keemia ning paljude loodusteaduste ja inseneridistsipliinide valdkonnas. Kui seos või regressioonifunktsioon on lineaarne funktsioon, siis on protsess tuntud kui lineaarne regressioon. Hajusdiagrammil saab seda kujutada sirgjoonena. Kui funktsioon ei ole parameetrite lineaarne kombinatsioon, siis on regressioon mittelineaarne.

Lisateave ANOVA (dispersioonanalüüs) kohta

ANOVA ei hõlma otseselt kahe või enama muutuja vahelise seose analüüsi. Pigem kontrollitakse, kas kahel või enamal eri populatsioonide proovil on sama keskmine. Näiteks võtke arvesse koolis klassile korraldatud eksami testitulemusi. Ehkki testid on erinevad, võib esinemine klassiti erineda. Üks meetod selle kontrollimiseks on kõigi klasside vahendite võrdlemine. ANOVA ehk dispersioonanalüüs võimaldab seda hüpoteesi kontrollida. Põhimõtteliselt võib ANOVA-d pidada t-testi pikenduseks, kus võrreldakse kahest populatsioonist võetud kahe proovi keskmist.

ANOVA põhiidee on kaaluda valimisiseseid erinevusi ja valimite vahelisi erinevusi. Valimi variatsiooni võib seostada juhuslikkusega, valimite varieerumist aga nii juhuslikkuse kui muude välisteguritega. Dispersioonanalüüs põhineb kolmel mudelil; fikseeritud efektide mudel, juhuslike efektide mudel ja segatefektide mudel.

Mis vahe on regressioonil ja ANOVA-l?

• ANOVA on kahe või enama valimi variatsioonianalüüs, regressioon aga kahe või enama muutuja vahelise seose analüüs.

• ANOVA teooriat rakendatakse kolme põhimudeli abil (fikseeritud efektide mudel, juhuslike efektide mudel ja segatefektide mudel), regressiooni aga kahe mudeli abil (lineaarne regressioonimudel ja mitmekordne regressioonimudel).

• ANOVA ja regressioon on mõlemad üldise lineaarse mudeli (GLM) kaks versiooni. ANOVA põhineb kategoorilistel ennustaja muutujatel, regressioon aga kvantitatiivsetel ennustaja muutujatel.

• Regressioon on paindlikum tehnika ning seda kasutatakse prognoosimisel ja ennustamisel, samas kui ANOVA-d kasutatakse kahe või enama populatsiooni võrdsuse võrdlemiseks.